Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Libyan J Med ; 17(1): 2121252, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2008467

ABSTRACT

The continuous emergence of new SARS-CoV-2 variants required rapid and reliable diagnostic methods for early detection and monitoring of the spread of the virus, especially in low-resource countries where whole genome sequencing is not available. We aimed to evaluate and compare the performance of two different RT-qPCR screening assays for the detection of B.1.617 lineage mutations. A total of 85 SARS-CoV-2 positive samples were collected between 9th August and 10 September 2021 and screened by two mutation-specific RT-qPCR assays for simultaneous detection of B.1.617.1 and B.1.617.2 lineage mutations. VIASURE Variant II PCR assay identified 2 Delta variant-specific mutations (L452R, and P681 R) in 80% of tested samples, while the PKamp™ Variant Detect™ assay was only able to detect one Delta variant specific mutation (L452R) in 75% of tested samples. This is the first report to show the Delta variant as the cause of the third wave in Libya. The use of multiplex RT-qPCR assays has allowed the identification of new variants for rapid screening. However, RT-qPCR results should be confirmed by whole genome sequencing of SARS-COV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/virology , Humans , Mutation , Polymerase Chain Reaction , SARS-CoV-2/genetics
2.
mBio ; 13(2): e0009922, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1736029

ABSTRACT

Recently, highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 with mutations within the spike proteins were identified in India. The spike protein of Kappa contains the four mutations E154K, L452R, E484Q, and P681R, and Delta contains L452R, T478K, and P681R, while B.1.618 spike harbors mutations Δ145-146 and E484K. However, it remains unknown whether these variants have alterations in their entry efficiency, host tropism, and sensitivity to neutralizing antibodies as well as entry inhibitors. In this study, we found that Kappa, Delta, or B.1.618 spike uses human angiotensin-converting enzyme 2 (ACE2) with no or slightly increased efficiency, while it gains a significantly increased binding affinity with mouse, marmoset, and koala ACE2 orthologs, which exhibit limited binding with wild-type (WT) spike. Furthermore, the P681R mutation leads to enhanced spike cleavage, which could facilitate viral entry. In addition, Kappa, Delta, and B.1.618 exhibit a reduced sensitivity to neutralization by convalescent-phase sera due to the mutation E484Q, T478K, Δ145-146, or E484K, but remain sensitive to entry inhibitors such as ACE2-Ig decoy receptor. Collectively, our study revealed that enhanced human and mouse ACE2 receptor engagement, increased spike cleavage, and reduced sensitivity to neutralization antibodies of Kappa, Delta and B.1.618 may contribute to the rapid spread of these variants. Furthermore, our results also highlight that ACE2-Ig could be developed as a broad-spectrum antiviral strategy against SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2, the causative agent of pandemic COVID-19, is rapidly evolving to be more transmissible and to exhibit evasive immune properties, compromising neutralization by antibodies from vaccinated individuals or convalescent-phase sera. Recently, SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 with mutations within the spike proteins were identified in India. In this study, we examined cell entry efficiencies of Kappa, Delta, and B.1.618. In addition, the variants, especially the Delta variant, exhibited expanded capabilities to use mouse, marmoset, and koala ACE2 for entry. Convalescent sera from patients infected with nonvariants showed reduced neutralization titers among the Kappa, Delta, and B.1.618 variants. Furthermore, the variants remain sensitive to ACE2-Ig decoy receptor. Our study thus could facilitate understanding how variants have increased transmissibility and evasion of established immunity and also could highlight the use of an ACE2 decoy receptor as a broad-spectrum antiviral strategy against SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents , COVID-19/therapy , Humans , Immune Evasion , Immunization, Passive , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , COVID-19 Serotherapy
3.
Can Commun Dis Rep ; 48(1): 22-26, 2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-1726968

ABSTRACT

Background: The Kappa variant is designated as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of interest (VOI). We identified 195 Kappa variant cases in a region of British Columbia, Canada-the largest published cluster in North America. Objectives: To describe the epidemiology of the Kappa variant in relation to other circulating SARS-CoV-2 variants of concern (VOC) in the region to determine if the epidemiology of the Kappa variant supports a VOI or VOC status. Methods: Clinical specimens testing positive for SARS-CoV-2 collected between March 10 and May 2, 2021, were screened for the detection of known circulating VOCs; approximately 50% of specimens were subsequently selected for whole genome sequencing (WGS). Epidemiological analysis was performed comparing the characteristics of Kappa cases to the main circulating variants in the region (Alpha and Gamma) and to non-VOC/VOI cases. Results: A total of 2,079 coronavirus disease 2019 (COVID-19) cases were reported in the region during the study period, of which 54% were selected for WGS. The 1,131 sequenced cases were categorized into Kappa, Alpha, Gamma and non-VOC/VOI. While Alpha and Gamma cases were found to have a significantly higher attack rate among household contacts compared to non-VOI/VOC cases, Kappa was not. Conclusion: Epidemiological analysis supports the designation of Kappa as a VOI and not a VOC. The Alpha and Gamma variants were found to be more transmissible, explaining their subsequent dominance in the region and the rapid disappearance of the Kappa variant. Variant surveillance strategies should focus on both detection of established VOCs and detection of potential new VOCs.

4.
Comput Struct Biotechnol J ; 20: 1168-1176, 2022.
Article in English | MEDLINE | ID: covidwho-1700892

ABSTRACT

SARS-CoV-2, the virus causing the COVID-19 pandemic, changes frequently through the appearance of mutations constantly leading to new variants. However, only few variants evolve as dominating and will be considered as "Variants of Concern" (VOCs) by the world health organization (WHO). At the end of 2020 the alpha (B.1.1.7) variant appeared in the United Kingdom and dominated the pandemic situation until mid of 2021 when it was substituted by the delta variant (B.1.617.2) that first appeared in India as predominant. At the end of 2021, SARS-CoV-2 omicron (B.1.1.529) evolved as the dominating variant. Here, we use in silico modeling and molecular dynamics (MD) simulations of the receptor-binding domain of the viral spike protein and the host cell surface receptor ACE2 to analyze and compare the interaction pattern between the wild type, delta and omicron variants. We identified residue 493 in delta (glutamine) and omicron (arginine) with altered binding properties towards ACE2.

5.
J Virol Methods ; 301: 114458, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1637393

ABSTRACT

BACKGROUND: Although more than a year has passed since the start of the pandemic, SARS-CoV-2 infection still represents a major challenge for public health all over the world due to viral genome capability of gaining rapid mutations. Whole-genome sequencing (WGS) is the gold standard for variant identification, but it is time consuming and relatively expensive. For this reason, assays targeting multiple regions of the SARS-CoV-2 genome may be useful for a rapid traceability of either known or new variants, anyway, not all the manufacturers are able to sustain the rapid development of variants. OBJECTIVE: We tested forty nasopharyngeal swabs, resulted positive for the presence of SARS-CoV-2 RNA at low cycle threshold (CT < 25), with SARS-CoV-2 Variants ELITe MGB® Kit, which was designed to identify Nigerian variant, possible UK variant and South African or Brazilian variant. RESULTS: During the analysis, we noted an atypical melting curve, different from the other variants recognizable by the kit. The subsequent WGS reported this variant as Kappa, so we assess the possibility of "suspecting" the presence of a Kappa variant using SARS-CoV-2 Variants ELITe MGB® Kit. CONCLUSIONS: Rapid variant screening followed by WGS offers the opportunity to study mutation dynamics and quickly identify possible variants of interest (VOI) and/or variants of concern (VOC), which is crucial in virus spreading control. Furthermore, an accurate analysis of the melting peak could be useful to suspect the presence of new variants.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/virology , Humans , Italy , Mutation , RNA, Viral/genetics , SARS-CoV-2/genetics , Whole Genome Sequencing
6.
Genes (Basel) ; 12(11)2021 11 16.
Article in English | MEDLINE | ID: covidwho-1523931

ABSTRACT

India experienced a tragic second wave after the end of March 2021, which was far more massive than the first wave and was driven by the emergence of the novel delta variant (B.1.617.2) of the SARS-CoV-2 virus. In this study, we explored the local and national landscape of the viral variants in the period immediately preceding the second wave to gain insight into the mechanism of emergence of the delta variant and thus improve our understanding of the causation of the second wave. We randomly selected 20 SARS-CoV-2 positive samples diagnosed in our lab between 3 February and 8 March 2021 and subjected them to whole genome sequencing. Nine of the 20 sequenced genomes were classified as kappa variant (B.1.617.1). The phylogenetic analysis of pan-India SARS-CoV-2 genome sequences also suggested the gradual replacement of the α variant with the kappa variant during this period. This relative consolidation of the kappa variant was significant, since it shared 3 of the 4 signature mutations (L452R, E484Q and P681R) observed in the spike protein of delta variant and thus was likely to be the precursor in its evolution. This study demonstrates the predominance of the kappa variant in the period immediately prior to the second wave and underscores its role as the "bridging variant" between the α and delta variants that drove the first and second waves of COVID-19 in India, respectively.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2/genetics , Base Sequence/genetics , Evolution, Molecular , Humans , India/epidemiology , Mutation/genetics , Phylogeny , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Whole Genome Sequencing/methods
7.
Viruses ; 13(11)2021 11 17.
Article in English | MEDLINE | ID: covidwho-1524174

ABSTRACT

The recent emergence of novel SARS-CoV-2 variants has threatened the efforts to contain the COVID-19 pandemic. The emergence of these "variants of concern" has increased immune escape and has supplanted the ancestral strains. The novel variants harbored by the B.1.617 lineage (kappa and delta) carry mutations within the receptor-binding domain of spike (S) protein (L452R + E484Q and L452R + T478K), the region binding to the host receptor. The double mutations carried by these novel variants are primarily responsible for an upsurge number of COVID-19 cases in India. In this study, we thoroughly investigated the impact of these double mutations on the binding capability to the human host receptor. We performed several structural analyses and found that the studied double mutations increase the binding affinity of the spike protein to the human host receptor (ACE2). Furthermore, our study showed that these double mutants might be a dominant contributor enhancing the receptor-binding affinity of SARS-CoV-2 and consequently making it more stable. We also investigated the impact of these mutations on the binding affinity of two monoclonal antibodies (Abs) (2-15 and LY-CoV555) and found that the presence of the double mutations also hinders its binding with the studied Abs. The principal component analysis, free energy landscape, intermolecular interaction, and other investigations provided a deeper structural insight to better understand the molecular mechanism responsible for increased viral transmissibility of these variants.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19/virology , Molecular Dynamics Simulation , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , COVID-19/immunology , COVID-19/transmission , Humans , India , Mutation , Protein Binding , Protein Conformation , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
8.
J Ethnopharmacol ; 284: 114797, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1487836

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: For millennia, Artemisia annua L. was used in Southeast Asia to treat "fever". This medicinal plant is effective against multiple pathogens and is used by many global communities as a source of artemisinin derivatives that are first-line drugs to treat malaria caused by Plasmodium parasites. AIM OF THE STUDY: The SARS-CoV-2 (Covid-19) global pandemic has killed millions and evolved numerous variants, with delta being the most transmissible to date and causing break-through infections of vaccinated individuals. We further queried the efficacy of A. annua cultivars against new variants. MATERIALS AND METHODS: Using Vero E6 cells, we measured anti-SARS-CoV-2 activity of dried-leaf hot-water A. annua L. extracts of four cultivars, A3, BUR, MED, and SAM, to determine their efficacy against five infectious variants of the virus: alpha (B.1.1.7), beta (B.1.351), gamma (P.1), delta (B.1.617.2), and kappa (B.1.617.1). RESULTS: In addition to being effective against the original wild type (WT) WA1, A. annua cultivars A3, BUR, MED, and SAM were also potent against all five variants. IC50 and IC90 values based on measured artemisinin content ranged from 0.3 to 8.4 µM and 1.4-25.0 µM, respectively. The IC50 and IC90 values based on dried leaf weight (DW) used to make the tea infusions ranged from 11.0 to 67.7 µg DW and 59.5-160.6 µg DW, respectively. Cell toxicity was insignificant at a leaf dry weight of ≤50 µg in the extract of any cultivar. CONCLUSIONS: Results suggest that oral consumption of A. annua hot-water extracts (tea infusions) could potentially provide a cost-effective therapy to help stave off the rapid global spread of these variants, buying time for broader implementation of vaccines.


Subject(s)
Antiviral Agents/pharmacology , Artemisia annua/chemistry , COVID-19/virology , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Inhibitory Concentration 50 , Plant Extracts/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL